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We examine a class of mathematical models describing the effects of habitat size
and geometry on community structure. We deduce spatial effects at the community
level from mechanistic models for the population dynamics and dispersal of
individua! populations together with some minimal hypotheses about the distribu-
tion of growth and dispersal rates among those populations. We use the models to
deduce species-area curves, and in that sense they provide an alternative to the
dynamic equilibrium theory of island biogeography introduced by MacArthur and
Wilson. Since the models can _explicitly incorporate various hypotheses about
population dynamics and the nature and strength of interactions between species
they permit 2 detailed analysis of how these hypotheses should affect community
structure. We illustrate that point by contrasting the implications of different
hypotheses in the context of refuge design. I@ 1994 Academic Press, Inc.

1. INTRODUCTION

A fundamental problem in biogeographic theory and refuge design is to
determine how the size and geometry of insular habitats affect both popula-
tion dynamics and community structure. Although previous theories have
addressed the effects of habitat size and geometry on either population
dynamics or community structure, there has not yet been a theoretical
approach that integrates population level effects. with community level
effects. Population level effects have been examined theoretically in terms
of reaction—diffusion equations as in (Skellam, 1951; Kierstead and
Slobodkin, 1953; Okubo, 1980; Pacala and Roughgarden, 1982); see also
the review articles (Levin, 1986; Kareiva, 1990). Community level effects
have most frequently been examined from the viewpoint of the dynamic
equilibrium theory of MacArthur and Wilson (1963, 1967) which together
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environmental heterogeneity into single species population models, as in
(Cantrell and Cosner, 1989, 1991a, 1991b).

The types of communities we model are somewhat different from those
for which dynamic equilibrium models of the MacArthur-Wilson type
are most appropriate. We specifically consider the sort of relictual
communities discussed in (Brown, 1971; Patterson and Atmar, 1986) which
arise when a habitat island becomes isolated due to climatic or geological
changes or habitat destruction. Such communities may be structured
primarily by successive extinctions rather than by a balance between
extinctions and colonizations. We consider two extreme cases: communities
in. which competition is assumed to play no role in community structure,
and communities (perhaps more accurately termed guilds) in which
competitive exclusion is a strong structuring factor. In the first case our
modeling hypotheses suggest a species—area relation that is nonlinear under
any standard transformation and which flattens out for very large areas.
The species—area curve is qualitatively similar in that respect to those
discussed in (Schoener, 1976; Gilpin and Armstrong, 1981; Gilpin and
Diamond, 1981; Martin, 1981) in connection with the MacArthur—Wilson
theory. In the second case our models yield the Gleason (1922) or
logarithmic relation S=1In k + z In 4. This relation may be expressed in the
equivalent form e5=kA* which can be viewed as a power law with S
replaced by its exponential e®. (For that reason the Gleason relation is
sometimes called exponential.)

I1. Tue MODELS

Diffusion Models for Population Dynamics

Our modeling approach is to determine the number of species expected
to coexist in a community occupying an isolated region such as an island
by using models from population dynamics to decide whether a species
with given rates of dispersal and per capita growth would persist or
become extinct in the region, then using a distribution function reflecting
the structure of a hypothetical community to count the number of species
whose growth and dispersal rates lie in the range predicting persistence. To
model population dynamics with spatial dispersal we use reaction—diffusion
equations of the type introduced in (Skellam, 1951; Kierstead and
Slobodkin, 1953) and applied in (Ludwig et al, 1979; Pacala and
Roughgarden, 1982; Murray and Sperb, 1983; Cantrell and Cosner, 1989,
1991a, 1991b). General discussions of modeling population dynamics with
dispersal in terms of reaction—diffusion 'equations are given in (Okubo,
1980) and (Levin, 1986). Such models are very flexible and can be adapted
to many many situations, but for the present purpose a rather simple
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with some assumptions about the relative numbers of rare and common
species yields the species-area relation S= CA*. In the present article we
shall demonstrate that a synthesis of the two modeling approaches is
possible and examine how such a synthesis sheds some new light on the
“single large or several small reserves” (SLOSS) question in refuge design.
Specifically, we show how a plausible theory of insular biogeography for
certain types of communities may be deduced from diffusion models for the
population dynamics of individual species and some simple hypotheses
about the distribution of growth and dispersal rates among those species
that might belong to the community. The most important aspect of our

work is not the detailed analysis of the models themselves but the observa- -

tion that spatially explicit models for population dynamics can provide a
reasonable alternative to the MacArthur-Wilson approach to island
biogeography, and in fact may give more insight into the mechanisms
involved in structuring communities in some cases.

Our primary goal in this work is to develop and describe a method of
connecting spatial effects at the hierarchal levels of population dynamics
and community structure. To our knowledge there has been little work on
that topic, although there seems to be some interest in the general question
of how to move up and down through the hierarchy of individuals, popula-
tions, communities, and ecosystems. A recent paper of Holt (1992) suggests
how metapopulation models can be used to understand certain aspects of
island biogeography theory, but the focus is somewhat different than in the
present article. Because our main purpose is to examine the connections
between population dynamics and the theory of community structure in
isolated habitats, we have used the simplest reasonable hypotheses about
both the autecology of the species which constitute the community and
about their interactions or the absence thereof. We recognize that in many
cases the details of single species population dynamics are of critical impor-
tance. Refuges are often designed to protect a single species or a small
number of species rather than a community or ecosystem. In view of that,
much of our past work has dealt with the population dynamics of one or
two species in complex environments; see (Cantrell and Cosner, 1989,
1991a, 1991b, 1993). We also recognize, however, that interactions between
species can have profound and complicated effects on community structure.
We therefore suggest some caution in the application to specific situations,
especially those involving endangered species, of simple biogeographic
theories such as those presented here or in the work of MacArthur and
Wilson. We hope that the general approach of constructing models for the
effects of habitat size and geometry on community structure from spatially
explicit models for population dynamics can be expanded and refined in
various ways. In particular, it should be possible to base a reasonable
theory on metapopulation dynamics, as in (Holt, 1992), or to incorporate

environmental heterogeneity into single species population models, as in
(Cantrell and Cosner, 1989, 1991a, 1991b). ,

The types of communities we model are somewhat different from those
for which dynamic equilibrium models of the MacArthur-Wilson type
are most appropriate. We specifically consider the sort of relictual
co.mmumtles discussed in (Brown, 1971; Patterson and Atmar, 1986) which
arise when a habitat island becomes isolated due to climatic or geological
chgnges or habitat destruction. Such communities may be structured
prl{nar'ily by successive extinctions rather than by a balance between
f:xtmc.tlons and colonizations. We consider two extreme cases: communities
in. which competition is assumed to play no role in community structure,
and co-rr-xmunities (perhaps more accurately termed guilds) in which
competitive exclusion is a strong structuring factor. In the first case our
mod_eling hypotheses suggest a species—area relation that is nonlinear under
any standard transformation and which flattens out for very large areas.
T'he species—area curve is qualitatively similar in that respect to those
dl.scussed in (Schoener, 1976; Gilpin and Armstrong, 1981; Gilpin and
Diamond, 1981; Martin, 1981) in connection with the MacArthur-Wilson
theor_y. In the second case our models yield the Gleason (1922) or
logarithmic relation S=In k + z In A. This relation may be expressed in the
equivalent form e%=kA4% which can be viewed as a power law with S

replac;d by its exponential e®. (For that reason the Gleason relation is
sometimes called exponential.)

II. THE MODELS

Diffusion Models for Population Dynamics

Our {nogeling approach is to determine the number of species expected
to coexist in a community occupying an isolated region such as an island
by.l using models from population dynamics to decide whether a species
with given rates of dispersal and per capita growth would persist or
become extinct in the region, then using a distribution function reflecting
the structure of a hypothetical community to count the number of species
whose growth and dispersal rates lie in the range predicting persistence. To
mode% population dynamics with spatial dispersal we use reaction—diffusion
equations of the type introduced in (Skellam, 1951; Kierstead and
Slobodkin, 1953) and applied in (Ludwig et al, 1979; Pacala and
Roughgarden, 1982; Murray and Sperb, 1983; Cantrell and Cosner, 1989,
1?91a, 1991b). General discussions of modeling population dynamics with
dispersal in terms of reaction—diffusion ‘equations are given in (Okubo,
1980) and (Levin, 1986). Such models are very flexible and can be adapted
to many many situations, but for the present purpose a rather simple
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formulation will suffice. Specifically, let 2 be a bounded region in the
plane; 2 will be our “island” of favorable habitat, and we shall assume that
it is surrounded by a region that is completely hostile to those species that
might inhabit Q. Let u(x,y,t) denote the population density of some
species; we shall assume that u satisfies
2 u  ou?
-a-l;= (ﬁ+%>+ru+ug(u) for (x,»)e2,1>0 (1.1)
and

u(x, y, 1)=0 for (x,y)ecs2 (1.2)

In (1.1) the constants d and r are positive; d measures the rate of random
dispersal of the population and r its intrinsic rate of increase at low den-
sities in favorable habitats. The function g(u) describes density-dependent
effects, so we require r+ g(u) <0 for u sufficiently large. This condition
simply means that the net growth rate of the population becomes negative
at high densities, reflecting limits on growth. In many cases g'(u) <0; for
example, g(u) = —u/K for the logistic equation with diffusion. We shall not
require that assumption, but we will describe its implications. The boundary
condition (1.2) reflects the hypothesis that the region surrounding Qis
utterly inhospitable. Thus, we assume that- colonization is not a factor in
the population dynamics on €. In principle our models could incorporate
colonization; we plan to address that point in future work. For detailed
discussions of the modeling leading to (1.1), (1.2) see (Skeilam, 1951;
Ludwig et al., 1979; Okubo, 1980; Levin, 1986).

It has been known for some time that in models such as (1.1), (1.2) the
existence of a positive equilibrium for the population density follows from
the instability of the state with zero density; this observation is sometimes
phrased “invasibility implies existence of a positive equilibrium.” This result
can be obtained via the methods of (Ludwig et al., 1979) or (Cantrell and
Cosner, 1989). Often mathematicians will assume that g’(u) <O so that the
equilibrium is unique, but this is not necessary; the condition r+ g(u) <0
for large u is needed to prevent unbounded growth. (The situation is more
complicated for systems involving direct interactions between species, as in
diffusive Lotka—Volterra models, but often some form of persistence follows
from invasibility; see (Pacala and Roughgarden, 1982; Hutson and Law,
1985; Cantrell and Cosner, 1993) for discussions. The stability or instability
of the zero state is determined by the sign of the largest eigenvalue o, for

the problem
2, 2
d(%_'!’i+%.‘./;:>+,-l[,=a¢ in 2
x Y (1.3)

Y=0 on 052.

If o,>0 the zero state is unstable; that is, the population described by
(1.1), (1.2) will increase at low densitics. We shall view the quantities d
and ras varying from species to species, so it is crucial to formulate the
requirement o; >0 in terms of r and 4.

The problem (1.3) can be solved explicitly in terms of the solution to

62¢ az¢
a2 oy*

+ig=0 inQ
(1.4)
¢=0 on 6Q.

The problem (1.4) has a smallest eigenvalue 4,(£2) which is characterized
by having a positive eigenfunction ¢,. In (1.3), the largest eigenvalue is also
characterized by a positive eigenfunction ¢,. (For a detailed discussion of
eigenvalue problems such as these, see (Courant and Hilbert, 1953).)

If we substitute ¥, = ¢, from (1.4) into (1.3) and solve for o, we obtain
o, = —di, +r since

. 0* d*
(~di 40 4= (5B +TE) v = o,

5o o, >0 if and only if

rld>4,(8). (1.5)

.

We review the following result which is not original in this work but will
be useful in our analysis.

TueoreM 1. Suppose that g(u) is a differentiable function with g(0)=0
and r+g(u) <0 for u sufficiently large. The problem (1.1), (1.2) has a
positive equilibrium if (1.5) is satisfied. If in addition g'(u) <0, the problem
(1.1), (1.2) has a unigue globally stable positive equilibrium if and only if
(1.5) holds. ’

Discussion. Results corresponding to special cases of Theorem 1 are
derived in (Skellam, 1951); more general results are derived in (Ludwig e?
al., 1979; Cantrell and Cosner, 1989, 1991a, 1991b.) Even without the
assumption g'(1) <0, (1.1) and (1.2) can be shown to predict permanence
or uniform persistence for the population if (1.5) holds by the methods
used for competition models in (Cantrell and Cosner, 1993); in general, if

the condition g’(x) <0 does not hold then there may be multiple equilibria
(Ludwig et al, 1979). '

Spatial Effects in Population Dynamics

The criterion (1.5) for the persistence of a species inhabiting Q2 in terms
of A, makes it possible to study the effects of the geometry of 2 on the




182 , CANTRELL AND COSNER

persistence -of populations. The value of A, is intimately related to the
geometry of Q. For example, of all regions with a given area, the circular
disc has the smallest value of 1, (see, for example, (Bandle, 1980)) so that
condition (1.5) can be satisfied with the weakest restrictions on r/d in that
case. Results similar to Theorem 1 hold in the presence of environmeptal
heterogeneity as described by a growth rate r(x, y) depending on loc-atlon;
such results have been used to study the effects of heterogeneity in the
articles (Pacala and Roughgarden, 1982; Cantrell and Cosner, 19?9,_ 1991a,
1991b) among others. Qur primary interest in the present article is in com-
paring homogeneous environments of different areas and perhaps dlf}'erent
shapes. To that end we shall examine how 1, behaves when the region Q
is rescaled and we shall calculate the values of 4, for rectangular regions
with different ratios of length to width. (The choice of rectangular regions
is simply to illustrate the effects of shape in a situation where computations
are simple.)

THEOREM 2. Suppose that the region Qq has area 1 and that  has the
same shape as Qq but has area A. If Ay is the principal eiger.zvalue for (1.3)
on Q, then the principal eigenvalue 2,(R) for (1.3) on 2 is iofA. Thus, the
criterion (1.5) for persistence of the population described by (1.1), (1.2)
becomes rjd> Jy[A. .

Proof. To rescale 2, to 2 we make the change of variables :‘é=ﬁ X,
= \/—/Z y. This preserves the shape of 2, and gives it area 4. The problem

99,7 %1jp=0 inQ

¢=0 on 082

has a positive solution @(%, 7) if and only if 1=21,(Q). However,

(.?/\/Z, ﬁ/\/;l- )€ 2, exactly when (%, J)ef2, so ¢o(i/ﬁ, j‘l/ﬁ ) is defined
and positive on 2 and is zero on 20. Using x=i/ﬁ and y= )“)/ﬁ we
find that the problem rescales into a form which is equivalent to (1.3) on
Q with A=1,/4. Since we have a solution for (1.3) on Q with ¢(%, y)=
bo(T//4, 7//4)>0 on £, it follows that 1,(2)=14o/4.

In simple geometries it is often possible to find eigenvalues via
the method of separation of variables. If 2 is a rectangle we can se.:ek
solutions to (1.4) of the form ¢(x, y)=X(x) Y(y), so that the equation
becomes X"(x) Y(y)+ X(x) Y"(y)+ AX(x) Y(y)=0 or X"(x)/X(x)=
—A—(Y"(»)/Y(»)). Since the expression on the left now depends on x and
that on the right only on y, both must be constants. Hence }‘("=
—(A+0) X and Y"=(Y for some constants { and A. These ordinary
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differential equations can then be solved explicitly. Only certain values of
¢ and 2 admit solutions that satisfy the boundary condition ¢(x, y)=
X(x) Y(y)=0, and only the smallest such value for 1 admits positive solu-
tions. That smallest value is A;. The method of separation of variables is
discussed in most introductory texts on partial differential equations; a
classical reference is (Courant and Hilbert, 1953). The method can be
applied in other simple geometries; for example, circular sectors and
annuli can be treated in this way if polar coordinates are used. If  is
the unit square {(x,»):0<x<1,0<y<1} it turns out that ¢(x,y)=
sin(nx) sin(ny) and A, = 2n*

If Q is a rectangle with area A and ratio of width to length w, the dimen-
sions will be A/\/x;x\/;ﬁ. If we put our coordinate axis along the
bottom and the left side of the rectangle we can write the eigenfunction as
$(x, y) =sin(r \/w x//A) sin(ny//Aw), so L, =n*[w+ (1/w)]/4. In the
general case the expression for 1, as 1,/4 allows the separation of shape
from area and hence permits the analysis of area effects.

Derivation of Species—Area Relations

So far we have considered only the effects of the size and shape of £ on
the dynamics of a single population. To pass from these to a theoretical
model for the number of species expected to occur in a community inhab-
iting @ we must make somé assumptions about the distribution of the
parameter r/d relative to the community. (It would be of interest to
examine data for real communities, but we are not aware of any source
where such data are tabulated.) We shall examine two simple sets of
hypotheses that are plausible descriptions of two different sorts of com-
munity structure. The first set of hypotheses is based on the assumption
that the community consists of species that do not significantly limit each
other via competition, that the parameter values for r/d are distributed
along a continuum, and that any species that can persist will be repre-
sented in the community. In that case the number of species expected could
be calculated by integrating the distribution function for the number of
species relative to r/d over the range r/d>2,/A. The second set of
hypotheses is based on the assumption that the community is highly
structured by competitive exclusion. The question of the extent to which
competition structures actual communities is controversial; see {Diamond,
1975b; Connor and Simberloff, 1979; Gilpin and Diamond, 1982, 1984,
1987; Wilson, 1987). We take no position on that question. Our
modeling approach can be adapted to either extreme assumption about the
role of competition and yields reasonable results in either case. The

hypotheses we impose are simple prototypes and many others could be
used instead.




184 CANTRELL AND COSNER

Species—Area Relations: Communities without Competition

Suppose that the parameter r/d is allowed to vary continuousty. To
count the number of species with r/d>2A,/A we need a distribution
function s(p) so that the number of species with p, <r/d<p, is given by
the integral of s(p) from p; to p,. In that case the number of species with
r/d> Aq/A will be

s a)=[ s(p)dp. (1.6)

/A

The values of r and d for a given species are always positive and are likely
to depend on the interaction of numerous factors. A typical factor might be
size, which might be expected to correlate positively with d but negatively
with r since larger animals will generally have lower birth rates but may be
able to travel farther in unit time (see Bonner, 1965). Since r and d depend
on many factors it is likely that there will be few species with very large or
small values for r/d and many with intermediate values. A distribution
function with that sort of qualitative behavior which gives a good descrip-
tion of the distribution of many biological quantities (see Ehrlich and
Roughgarden, 1987, Chap. 19) is the lognormal distribution, and we shall
use that for s(p) in (1.6). We assume a species pool of S, species and
obtain

So o e—nnp—umal
S*(A)= —p, (L.7)
( ) J22no anl’A 14

where u and ¢ are the usual parameters in the lognormal distribution.
Other assumptions about s(p) are certainly reasonable; in particular, the
choice s(p)=kp~¢*" would lead to the Arrhenius (1921) or power law
form S(A)= CA*. However, it is not clear why that choice would be any
more or less appropriate than the lognormal distribution in this context. In
fact, a choice of distribution function s(p) with [ s(p) dp finite might be
preferred to choices where the integral is infinite since a finite integral
reflects a finite pool of possible species. In the next section we shall examine
how well (1.7) can be made to fit some of the data sets used in earlier
biogeographic studies. In what follows we shall use S*(A4) exclusively to

designate the species-area curve defined in (1.7) via the lognormal distribu-

tion and S(A4) exclusively to designate the power law S(A4)=CA*.

Species—Area Relations: Communities with Competition

The idea of “limiting similarity” of species (or alternatively the idea that
only a certain amount of niche overlap is possible if species are to coexist)
is formulated quantitatively in (Hufchinson, 1959) and more theoretically

in (May, 1973). If a collection of morphologically similar species complete
for a type of food that occurs in varying sizes, a typical hypothesis would
be that a pair of species occupying adjacent niches will differ in size
by some constant factor. If size is measured by a linear dimension such
as length, it has been suggested that the factor should be 1:1.3; see
(Roughgarden 1989, p. 204) for a discussion and references. Certainly that
hypothesis is too simple for many real situations, but it can serve as a
reasonable starting point for theoretical work. Let us then suppose that we
have a community with limited membership, each of whose members
occupies a niche corresponding to a certain size, with the possible sizes of
species inhabiting adjacent niches differing by a constant factor. In such a
community the parameters r and d would not take on all values, but only
certain discrete values corresponding to the discrete niches. It is plausible
that r may vary inversely with size while d may vary directly; see, for
example, the discussion of size in (Bonner, 1965). Suppose that the
parameters r and d associated with the niche corresponding to the smallest
body size are r=rq and d=d,. The parameters associated with the niche
corresponding to the second smallest body size would then be r= Pry and
d = Qd, with constant factors P <1 and Q> 1 describing the displacement
between adjacent niches. For the third niche we should have r = P(Prq) =
P?ry and d = Q(Qd,) = Q°d,, again because we assume that adjacent niches
correspond to body sizes which differ by a constant factor. If we continue
this process, the coefficients for the ith niche should be r= P'ry, d=Q'd,.
If we let R=P/Q then R<1 and the critical parameter r/d corresponding
to the ith niche will be r/d = P'ro/Q'dy= R'ry/d,. The number of species to
be expected in a region Q with fixed shape and area A is then determined
by finding the largest value of i for which the ratio ro/d, multiplied by the
ith power of R satisfies -

Rirg/dy> Ao/ A. - (L)
Solving the corresponding equality for / in terms of A yields
i=[log(Aedo/ro) —log A/log R. (1.9)

We may interpret i as the number of species which can be expected in our
community. Since R< 1, log R <0, so (1.9) may be rewritten as

S*(A)=log k+zlog 4, (1.10)

where z is a positive constant. The expression (1.10) is a version of the
Gleason (1922) or exponential law for species numbers relative to area. It
is equivalent to the formulation e®=kA", which is essentially the power
law with S replaced by its exponential e°. That law has been used to some
extent and fits some data sets reasonably well. A historical discussion of the
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use of (1.10) and an extensive statistical analysis of (1.10) and the power
law S(A4)= CA" is given in (Conner and McCoy, 1979). Since they provide
a fairly detailed discussion and analysis of (1.10) we shall only make the
observation that (1.10) is a formulation which is at least plausible and has
been used to some extent as an alternative to the more usual power law.
We can make the shape dependence in (1.10) more precise by observing
that log k =log(dedy/ro)/log R.

Shape Effects in Species—Area Relations

Both (1.6) and (1.10) depend on 4. If we wish to examine shape effects,
we can do so by observing how shape affects o. For both (1.6) and (1.10),
an increase in A, yields a decrease in the projected number of species.
Among all regions of unit area, the one with the smallest value of 2g is the
circle (see (Bandle, 1980)). For a square, Ao =2m?; and as we have observed
earlier, for a rectangle with width to length ratio w, Ag=m*[w+ (1/w)]. It
follows that in such a case we have

JoA =m2[w+ (1/w)]/A. (1.11)

Formula (1.11) suggests that variations in shape as measured by w should
have the same degree of influence on S* or S*# as does 4. This appears to
disagree with the statistical study (Blouin and Connor, 1985). However, an
examination of the area and shape variations of insular habitats or islands
in typical data sets (e.g, from (Preston, 1962) or from (Brown, 1971)
indicates that within a data set area is likely to vary significantly more than
shape. The montane “island” habitats discussed in (Brown, 1971) are
mostly somewhat elongated; the oceanic islands in (Preston, 1962) are
somewhat irregular but generally closer to being round, and so on. Also,
our models do not incorporate colonization, so the boundary acts as a sink
but not as a source. In this context it is to be expected that geometries with
relatively short boundaries (such as circles) will be predicted to sustain the
most species. If colonization is an important factor, then the boundary will
act as a source as well and the expected effects of shape variation may be

very different; see, for example, the comments in (Connor and McCoy,

1979).

I1I. EMPIRICAL EVIDENCE FOR NEW SPECIES-AREA RELATIONS
IN THE ABSENCE OF COMPETITION

In this section we briefly consider how well the formula for S*(A4) given
in (1.7) fits some data sets. Most of the data sets we consider are taken
from (Preston, 1962) and were used in the early development of island

I

blogc_aography theory by MacArthur and Wilson (1563, 1967). We also
consider the data from (Brown, 1971); those data arise from a situation
that I}royvn d'escribes as “nonequilibrium insular biogeography” in which
colonization is argued to be of negligible importance. We have ignored
shape e!Tects; the “islands” are assumed to be square, so that A, =272 If
the ad'dltional parameter w discussed in Section 1 to describe shaope is aiso
used, it should be possible to improve the fit somewhat, but we have not
attempted that. The object is not to validate statistically the theory we have
presen@d, but only to show that on the basis of fitting data sets the theory
is plausible. We note that the formulation for $*(4) in (1.7) involves three
parameters rather than the two involved in the power law relation
S(A)= CA*, so we should expect S*(A4) to perform at least as well as S(4)
Ina sense, the main point of this article is to provide a method for incor-.
porating as many biologically relevant parameters as desired into the
species-area relation. If the simple diffusion model in (1.1), (1.2) were
feplaced by the more complex and detailed models of the sort described
in {Cantrell and Cosner 1989, 1991a, b) it should be possible to incor-
porqte parameters that describe environmental heterogeneity, directed
motlno.n or migration as well as random diffusion, and the degree of
hostility of the exterior of the insular habitats under consideration, since all
of those factors influence the eigenvalue 1, in more or less quzantiﬁable
ways.

We have fitted the species-area curves both to untransformed data and
to log transformed data. It is hot clear to us whether it is more appropriate
to fit the relation (1.7) defining S*(A4) to the untransformed data or to the
log transformed data since the relation remains nonlinear under any
standard transformation of data. However, it has been standard practice to
fit the power law relation S(A4)= CA* to log transformed data; that is
natural since the power law becomes linear in log-log plots. In fitting both
untransformed and log transformed data we used the method of least
squares. For an untransformed data set consisting of n species—area pairs
(s;, a;) we minimized the error E given by the expressions

E= 3 [S*(So, s 0, ) =51 (2.1)

i=1

for S*(A4) as defined in (1.7) and
E= Y, [S(C,za)~s]? (22)
i=1 ) 1

fgr S(A)= CA~* relative to (S,, , ) and (C, z) respeciively. As an addi—
tional test for goodness of fit we computed the coefficient of determination, .
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j 10000 20000 30000 40000

Fic. la. Birds of the West Indies. The abscissa represents area; the ordinate represents the
number of species. The data points are taken untransformed from (Preston, 1962, Table IV).
The solid curve is the graph of $§*(4), as defined in (1.7), fitted to the untransformed data by
minimization of the least squares error (2.1). The broken curve is the graph of S(4)= CA4*,
also fitted to the untransformed data by minimization of the least squares error (2.2). The
computed values of the parameters in S*(4) and S(4) and of the goodness of fit are as
follows: for S*, Sy=140, p= —545, o=23.18, least squares error E=2857, coefficient of
determination (r?)=0.930; for S, C=11.6, z=0.218, least squares error E=1300, coefficient
of determination (r?) = 0.894.

' 100000 200000 300000

FiG. 2a. Birds of the East Indies. The abscissa represents area; the ordinate represents the
number of species. The data points are taken untransformed from (Preston, 1962, Table V).
The solid curve is the graph of $*(4), as defined in (1.7), fitted to the untransformed data by
minimization of the least squares error (2.1). The broken curve is the graph of S(4)= CA4%,
also fitted to the untransformed data by minimization of the least squares error (2.2). The
computed values of the parameters in S*(4) and S(4) and of the goodness of fit are as
follows: for S*, Su==2200, p= —14.1, 0 =4.72, least squares error E= 20, 900, coeflicient of
determination (r?)=0.895; for §, C=596, z=0.348, least squares error E=20,300,
coefficient of determination (r?)=0.897. .
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Fic. 1b. Birds of the West Indies. The abscissa represents log (area); the ordinate
represents log (number of species). The data points are taken from (Preston, 1962, Table IV),
but are log-log transformed. The solid curve is the log-log graph of S*(4), where S*(A4) is
defined in (1.7). The broken line is the log-log graph of §(A4)= C47; thus C is the y-intercept
and = is the slope. The curves were fitted to the data (after a logarithmic transformation) by
minimization of the (logarithmic) least squares error E given for S*(4) in (2.3) and for S(4)
in (2.4). The coefficient of determination was computed in terms of the logarithmically trans-
formed data and relations. The computed values of the parameters in S*(4) and S(4) and of
the goodness of fit are as follows: for S*, So =280, p= —9.42, o=54, (logarithmic) least
squares error E=0.211, (logarithmic) coefficient of determination (r*)=0.930; for S, C=9.20,
= =10.244, (logarithmic) least squares error E=0.235, (logarithmic) coefficient of determina-
tion (r?)=10922,

FiG. 2b. Birds of the East Indics. The abscissa represents log (area); the ordinate
represents log (number of species). The data points are taken from (Preston, 1962, Table V),
but are log-log transformed. The solid curve is the log-log graph of 5*(4), where S*{4) is
defined in (1.7). The broken line is the log-log graph of S(4}= C4% thus C is the y-intercept
and z is the slope. The curves were fitted to the data (after a logarithmic transformation) by
minimization of the (logarithmic) least squares error E given for S*{A4) in (2.3) and for 5(4)
in (2.4). The coefficient of determination was computed in terms of the logarithmically trans-
formed data and relations. The computed values of the parameters in S*(4) and S(A) and of
the goodness of fit are as follows: for 5%, §;=2830, p=—15.5, o =5.28, (logarithmic) least.
squares error E = 0.281, (logarithmic) coefficient of determination (r*)=0.908; for S, C=5.69,
===0.351, (logarithmic) least squares error E=0.274, (logarithmic) coefficient of determina-
tion (r*)=10.910. {
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FiG. 3a. Land Vertebrates on Islands in Lake Michigan. The abscissa represents area; the
asrdinate represents the number of species. The data points are taken untransformed from
{Preston, 1962, Table VI). The solid curve is the graph of S*(4), as defined in (1.7), fitted 10
the untransformed data by minimization of the least squares error (2.1). The broken curve is
the graph of S(A)=C4? also fitted to the untransformed data by minimization of leus!
squares error (2.2). The computed values of the parameters in S*(4) and S(4) and of the
soodness of fit are as follows: for S*, Sy=1770, p= —224, 0 =942, least squares erruy
E=1531, coeflicient of determination (r*)=0.959; for S, C = 9.64, z =0.238, least squares errur
E =514, coefficient of determination (r?)=0.961.

500 1000 1500 2000

FiGc. 4a. Land plants of the Galapagos. The abscissa represents area; the ordinatc
represents the number of species. The data points are taken untransformed from (Preston.
1962, Table VII). The solid curve is the graph of S*(4), as defined in (1.7), fitted to thc
untransformed data by minimization of the least squares error (2.1). The broken curve is the
graph of S(4)= CA?, also fitted to the untransformed data by minimization of least squares
zrror (2.2). The computed values of the parameters in $*(4) and S(A4) and of the goodnes:
of fit are as follows: for S*, Sy=380, p= ~2.63, 0 =3.33, least squares error E=73, 200.
coefficient of determination (r2)=0.627; for S, C=484, z=0.254, least squares error
E=177, 900, coefficient of determination (r*)=0.604:
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FiG. 3b. Land Vertebrates on Islands in Lake Michigan. The abscissa represents log
{arca); the ordinate represents log (number of species). The data points are taken from
{Prestion 1962, Table V1), but are log-log transformed. The solid curve is the log-log graph
of 5*(A), where S*(4) is defined in (1.7). The broken line is the log-log graph of S(4)=CA4%
thus C is the y-intercept and z is the slope. The curves were fitted to the data (after a
dogarithmic transformation) by minimization of the (logarithmic) least squares error E given
for S*(A4) in (2.3) and for S(4) in (24). The coefficient of determination was computed in
terms of the logarithmically transformed data and relations. The computed values of the
parameters in S*(A4) and S(4) and of the goodness of fit are as follows: for S*, Sy=124,
p= —500, o=23.85, (logarithmic) least squares error E=0.837, (logarithmic) coefficient of
determination (r2}=0922; for S, C=631, z=0295, (logarithmic) least squares error
E =130, (logarithmic) coefficient of determination (r?)=0.879.

% 2 4 6

Fic. 4b. Land plants of the Galapagos. The abscissa represents log (area); the ordinate
represents log (number of species). The data points are taken from (Preston, 1962, Table VII),
but are log-log transformed. The solid curve is the log-log graph of S*(A4), where S*(4) is
defined in (1.7). The broken line is the log-log graph of S(4)=CA4%; thus C is the y-intercept
and z is the slope. The curves were fitted to the data (after a logarithmic transformation) by
minimization of the (logarithmic) least squares error E given for S*(A4) in (2.3) and for S(4)
in (2.4). The coefficient of determination was computed in terms of the logarithmically trans-
formed data and relations. The computed values of the parameters in $*(4) and S(4) and of
the goodness of fit are as follows: for S*, Sp= 1600, p=—112, o = 6.42, (logarithmic) least
squares error E=8.40, (logarithmic) coefficient of determination (r})=0.573; for S, C=28.5,
z=0.331, (logarithmic) least squares error E=8.17, (logarithmic) coefficient of determination
(r?) =0.585.



192 CANLRLLL iy Luontay

' 200 400 600 800 1000 1200

FiG. 5a. Mammals in montane isolates, western U.S. The abscli(ssa re{:resc?ls ;:;a}r:)l:s
inate T ies. The data points are taken untransior

ordinate represents the number of species. Fa e ked 1o
i i h of S*(A), as defined in (1.7),

, 1971, Table 1). The solid curve is the grap .
i}?;olr:':t‘ransformed data by minimization of the least squzgecs; erro’; ;2.1). 'li:ixuet gc:llgﬁezug:i }:(s:
= CA* the untransformed data. The com
the graph of S(4)= CA7, also fitted to s B e S, Sue s

in S*(A4) and S(4) and of the goodness of it are lows: St .
T_l:a_ﬂ‘l;t;;s :1:: 1 t§6 )least squares error E£= 549, cocfficient of determination (r*)=0.697; for

S. C=0.793, z=0.366 least squares error E =643, coefficient of determination (r?)=0.644.
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Since one of the habitat supports 12 species, we recomputed the coefficients for S* w o

i = E 2 = 0.692.
set equal to 12. That computation yielded p= —3,03, o= 1.78 with E= 55.6 and r

i the corre-
r2, for the fitted curves relative to, the untransformed datac.1 F}c‘)r ey
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minimizing the expressions =
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for S*(A) defined in (1.7) and
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IIcx. Different sorts of fitting techniques may yield different 5256112 S. s
interesting to note that in some early studies (e.g. Preston ( )),f a
are fitted “by eye” from log-log plots. We observe t_hat sot?leho e
computations for S*(A) yield what seem to be unreahsncatlly 1g-1 \{)511 u

for the parameter Sp describing the total number of species available as

potential community members.
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FIG. 5b. Mammals in montane isolates, western U.S. The abscissa represents log(area);
the ordinate represents log (number of species). The data points are taken from (Brown 1971),
but are log-log transformed. The solid curve is the log-log graph of S*(4), where S*(4} is
defined in (1.7). The broken line is the log-log graph of S(4)= CA4%; thus C is the y-intercept
and - is the slope. The curves were fitted to the data (after a logarithmic transformation) by
minimization of the (logarithmic) least squares error E given for S*{4) in (2.3) and for S{4)
in {2.4). The coefficient of determination was computed in terms of the logarithmically trans-
formed data and relations. The computed values of the parameters in S*(4) and S(4) and of
the goodness of fit are as follows: for S*, Sg=97, p= —109, ¢=4.91, (logarithmic) least
squares error E =235, (logarithmic) coefficient of determination (r?) =0.671; for S, C=0.519,
==0429, (logarithmic) least squares error=2.32, (logarithmic) coefficient of determina-
tion =0.676. (In (Brown 1971) the quantity r for the relation S=CA" is computed as 0.82;
that agrees with our computation of r* to two significant figures.)

The point of our computations is simply to show that in some
reasonable sense S*(A4) fits some data sets about as well as S(4). We have
plotted the untransformed data and the curves fitted to it for five data sets
in Figures la-5a. We have plotted the log transformed data and corre-
sponding fitted curves in Figures 1b-5b. The computed values for the
parameters in the relations, the least squares errors E or E, and the coef-
ficients of determination are given in the figure captions and summarized
in Tables I and II. Our conclusion is that S*(A) gives a slightly better fit
to the data than S(A4) in some cases but a slightly worse one in others. The
overall performance of the two formulations appears to be similar.

We have not made a similar analysis of how well S#(4) as defined in
(1.10) fits the data, since an extensive statistical analysis of S*(A) versus
S(A) (that is, logarithmic versus power law dependence) is given in
(Connor and McCoy, 1979) and the comparison has also been discussed in
various other articles (for example, (Newmark, 1986)) in specific cases.
Some aspects of the analysis in (Connor and McCoy, 1979) are disputed
in (Sugihara, 1981). On the basis of published discussion it seems fair to
conclude that in many cases S(4) gives a somewhat better fit to the data,
but in some cases S*(A4) gives results that are as good or better.
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1V. INFERENCES AND SPECULATIONS ON REFUGE DESIGN

A major reason for considering mathematical models is that they serve
to focus, sharpen, and stimulate discussion. The island biogeography
theory of Mac Arthur and Wilson has been used extensively to address
questions of refuge design, and has certainly stimulated much discussion;
see for example (Diamond, 1975a; Simberloff and Abele, 1976, 1982; Cole,
1981; Newmark, 1986; and references therein). There are two major draw-
backs in applying the MacArthur-Wilson theory to refuge design. The first
is that in some cases there may not be significant colonization of a refuge,
and the MacArthur-Wilson theory assumes a balance between colonization
and extinction; this point is raised in (Newmark, 1986). The second is that
the MacArthur—Wilson theory does not explicitly incorporate assumptions
about community structure. We observed that there has been considerable
controversy over the extent to which competition structures communities
(see (Diamond, 1975b; Conner and Simberloff, 1979; Gilpin and Diamond,
1982, 1984, 1987; Wilson, 1987). There has also been some confroversy
about optimal approach to refuge design (see Diamond, 1975a; Simberlofl
and Abele, 1976, 1982; Connor and McCoy, 1979; Cole, 1981; Blouin and
Connor, 1985; Newmark, 1986; Cantrell and Cosner, 1989, 1991a, 1993).
Our modeling approach admits a varity of assumptions about community
structure with each assumption influencing the conclusions of the theory.
The models are based on the assumption that extinction plays a much
more significant role than colonization. Heiice our models may apply in
situations other than those appropriate for the MacArthur—Wilson theory.

If we examine the formulations leading to S*(4) and S*#(4), there are
some immediate and striking differences in the implications for refuge
design. Both models suggest that a single large reserve will usually sustain
more species than a single small one of similar habitat type. However, the
models diverge in their implications for the question of whether it is better
to have a single large refuge or several small ones. The assumption leading
to S*(4) is that competitive exclusion is not an important factor in
community structure. The implication is that any species which can sustain
itself in a reserve with a given area will be represented there. It follows that
the faunas of reserves of different sizes should be strictly nested; that is, a
larger reserve will contain all those species found in any smaller reserve and
perhaps some others. (The nestedness of faunas in certain habitat islands is
asserted in (Patterson and Atmar, 1986), for example.) The conclusion is
that if competitive exclusion plays no major role then a single large reserve
should sustain more species than several small ones. On the other hand, the
assumption leading to the formulation S*(A4) is that the community struc-
ture is strongly influenced by competitive exclusion. If that is the case then
two reserves of the same size would be expected to have the same total
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number of species but might have few or no species in common. Since
S#(A) is concave, it follows that if competitive exclusion is a major struc-
turing factor then several small reserves that have different species occu-
pying corresponding niches could very well sustain more species than a
single large one in which only one of the possible occupants of each niche
would actually be present. Of course, it would be necessary to have several
possible species available for many niches for such an effect to occur. Thus,
any single small refuge would contain only a fairly low percentage of the
species that we might want to preserve. (It is argued in (Cole, 1981) on the
basis of a different analytic approach that the situation in which several
small refuges would be expected to preserve more species than a single
large one is when all the refuges together contain only a small fraction of
the overall species pool. Our conclusion is qualitatively similar to Cole’s
but not as strong.) .

The general conclusion of our speculations is that in situations where
colonization is not important, if competitive exclusion is not a major factor
in structuring a community then one large refuge should preserve more
species than several small ones, but if competitive exclusion does structure
a community, then several small refuges might be more effective than a
single large one. We do not. consider these conclusions to be more than
speculations, but we do believe that they show how bringing community
structure into the models for the species—area relationship allows a more
detailed examination of some of the factors affecting the relative merits of
different refuge designs. A conclusion suggested by these speculations that
we do consider to be important and generally valid is that it is absolutely
crucial to understand the detailed ecology of a community or species before
trying to decide how best to preserve it. The same sort of conclusion is
drawn in Cantrell and Cosner (1991a) on the basis of population dynamics
for a single species and in Newmark (1986) on the basis of a number of
statistical and empirical arguments.

V. CONCLUSIONS AND DISCUSSION

Our first and most basic conclusion is that it is possible and worthwhile
to formulate a reasonable theory of the insular biogeography of relict
populations from standard models of population dynamics with dispersal
that are combined with simple hypotheses about community structure. Our
models are reasonable from a theoretical viewpoint because they are based
on modeling considerations which are widely accepted as plausible in some
circumstances. Our models are reasonable from an empirical viewpoint
because they are partly based on the observations of (Brown, 1971;
Patterson and Atmar, 1986) that extinction may be more important than
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colonization in structuring some communities, and because they fit some
data sets as well as or better than competing models.

A major advantage of our models is that they contain explicit parameters
describing the size and shape of the insular habitat and the growth and
dispersal rates of the species inhabiting it. In some cases the parameters in
the models can be estimated; see (Okubo et al,, 1989) as an example. Our
assumptions about community structure are either minimal (as in the
formulation of S*(A) in (1.7)) or based on ideas that have proven useful
in other theoretical investigations (as in the formulation for $*(4) in (1.10)
on the basis of the sort of niche overlap theory suggested in (Hutchinson,
1959) and developed in (May, 1973).) In any case our models can accom-
modate various assumptions about population dynamics and community
structure, so they can be adapted to different situations and then used for
theoretical comparisons. Many other factors such as “advective” transport
as in (Murray and Sperb, 1983) or spatial heterogeneity (as in Cantrell and
Cosner, 1989, 1991a, 1991b) could also be easily incorporated into the
models. Hence, they permit inquiry into how various mechanisms may
effect community structure. They do not give a single form for the
species—area relation. Instead, they translate assumptions about the
distribution of growth and dispersal rates in a community into conclusions
about species—area relations. Thus, the modeling approach we have taken
permits an explicit analysis and comparison of the implications of different
assumptions about a community and its environment. It also allows the
derivation of a theory from a mechanistic approach at the population level.
We believe that some such approach is needed if we are to better under-
stand the mechanisms leading to the biogeography we observe. The type of
models we have described here are relatively elementary; much of their
value lies in the fact that they can be expanded, extended, and refined to
describe other situations or to include other factors.

We consider our models reasonable from empirical viewpoint because
they produce as good a fit to at least some data sets as does the
MacArthur-Wilson model, as shown in Tables I and II and the figure
captions for S*(4). We have not performed the analysis for S #(A), since
the modeling leading to the definition of S*(4) in (1.10) yields a new
derivation of the logarithmic or Gleason (1922) form of species—area
relation, which in some cases has been shown to fit data well. (See McCoy
and Connor, 1979; Newmark, 1986). It is certainly possible to refine the
models further, incorporate other effects, and perform more detailed
statistical analyses. We intend to pursue some of those ideas in future work
and hope that other investigators may do so as well.

The specific models we consider in this paper do not incorporate
colonization. That is both a limitation and a strength of those models. The
general modeling approach we have taken should be adaptable to some
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situations where colonization is important, and we intend to pursue that
topic further in future work. The models without colonization that we con-
sider here provide a theoretical justification for the application of island
biogeographic ideas to situations where colonization is not significant, as
discussed in (Brown, 1971; Patterson and Atmar, 1986). In a sense they can
be interpreted as explaining why island biogeography theory based on a
balance between colonization and extinction gives a good fit to some data
sets for which colonization is not a major factor. Since the predictions of
our models are numerically similar to those of the MacArthur—Wilson
theory in some parameter ranges, they can be viewed as explaining the
observation that the MacArthur-Wilson theory gives fairly good results
even in situations where the underlying assumptions of a dynamic
equilibrium between immigration and extinction may not hold.

We have presented some general reasons why our modeling approach is
worth pursuing. There are also certain specific features of the formulation
S*(A) which could be viewed as making it a more attractive description of
the species-area relation than the power law. For example, S*(A4) is not
linear relative to any standard coordinate transformation. In particular,
S*(A) flattens out to an asymptote as 4 — co. It has been suggested
(Schoener, 1976; Martin, 1981)-that a good species—area relation should
have that feature, and in fact to fit data and predict species numbers in the
MacArthur-Wilson theory, Gilpin and Diamond (1976) had to assume
conditions on colonization and extinction rates leading to an asymptotic
form of species—area curve rather than the more commonly used power
law. However, there does not appear to be general agreement on this
point; see the discussion in Williamson (1981, pp. 123-126.) In view of the
variety and complexity of factors affecting community membership (see
Williamson (1981) or Roughgarden (1989)) it seems likely that any specific
feature of a model will be an advantage in some situations and a drawback
in others. This observation returns us to the point that our models are
adaptable to many different situations because they embody explict
ecological assumptions that can be tailored to fit a given situation.

A secondary conclusion that can be drawn from the speculations on
refuge design is that for effective decision making in refuge design a good
understanding of the ecology of the species and/or the community being
protected is absolutely essential. The discussion illustrates how similar
models which yield reasonable and fairly similar species-area curves can-
have strongly divergent implications for refuge design. This -sort of
phenomenon is discussed for single species population models in (Cantrell
and Cosner, 1991a) and from a more general ecological viewpoint in
(Newmark, 1986). Our speculations in themselves may or may not
represent realistic assessments of any actual situations, but they do show
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how varying the assumptions about structuring factors can radically
change the models’ predictions. Of course, such comparisons are possible
only in models that incorporate structural assumptions in a fairly explicit
way. We hope that our approach can stimulate and focus discussion on
which assumptions are appropriate in which sorts of situations.
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